The Effect of Hirudin Herbal-acupuncture on Neurotransmitters against Middle Cerebral Artery Occlusion(MCAO) Rats.

Suk Jac-Wook · Jung Tac-Young · Leem Seong-Cheol · Seo Jeong-Chul · Han Sang-Won

Department of Acupuncture & Moxibustion, College of Oriental Medicine, Daegu Hanny University,

Abstract

Objective: This experimental studies were performed in order to prove the effect of Hirudin Herbal-acupuncture by using rats that had neuronal damage due to the Middle Cerebral Artery Occlusion(MCAO).

Method: We observed the change of extracellular concentrations(μM) of dopamine, DOPAC, HVA, HIAA, glutamate, aspartate, GABA, glycine, taunine, alanine, and tyrosine as extracted by vivo microdialysis, in the Hirudin Herbal-acupuncture administrated rats(240-260g. Sprague-Dawley) subjected to the MCAO. The dialysates were extracted three times before the MCAO and six times after the MCAO every 20 minutes, and analysed by high-performance liquid chromatography(HPLC).

Results: Hirudin Herbal-acupuncture significantly inhibited glutamate, aspartate, and tyrosine which are stimulant neurotransmitters at brain ischemia, and it significantly decreased glycine, GABA, taunine, and alanine which are inhibitory neurotransmitters at brain ischemia.

Conclusion: Hirudin Herbal-acupuncture may prevent delayed neuronal death(DND) in selectively vulnerable focal areas of the brain effectively.

Key words: Hirudin, Herbal-acupuncture, Middle Cerebral Artery Occlusion(MCAO), Neurotransmitters
성기에는 대부분 본虚標實과 下盛下虛기이므로 治療는
本虛標實이 있어도 標實證을 爲主로 治療한다. 急急治其
標的 原則에 따라 平肝熄風, 清熱養陰, 化痰通絡, 活血通
絡 등의 治法을 多用하는데, 이 때에는 邪氣가 盛하고
症候가 實하기 때문에 발리 病邪을 除去하기 爲한 治
療로, 清心開竅 蘇醒神志 無解熱毒의 效能이 있는 약물
을 많이 使用하고 있다。
水蛭은 水蛭科(거미리과:Hirudinidae)에 속한 거미리
(水蛭:Hirudo nipponica Whitman) 등의 乾燥體로, 性은
平胃有小毒하고 味는 辛鹹苦하며 肝經으로 入하고 破血
瘀滞, 散瘀通經의 效能이 있어서 瘡癈痞塊, 血瘀經閉,
跌打損傷을 治療한다. 水蛭은 虛證본인 Hirudin은 質
이 심한 후 국소 혈액속적이나 국소 혈액응고를 제거하는
때 쓰이며, 근간에는 靜脈血栓症의 治療 및 치료 등 정
신적인 抗血栓療法를 위해 그 사용이 시도되고 있다.
水蛭藥漿에 대한 연구로는 endotoxin을 주입하여 溫度
시킨 血栓症에 대한 연구는 있으나, 아직까지 中大腦
動脈을 閉塞시킨 動物모델을 利用하여 腦血流過程에서
水蛭藥漿이 神經傳達物質에 미치는 影響에 臨床 연구
는 거의 없는 실정이다.
이에 異常은 破血瘀痔, 散瘀通經的 效能으로 血栓
治療의 작용이 있을 것으로 예상되는 水蛭의 虛證본인
Hirudin藥漿으로 腦血瘀 誘發時 神經傳達物質에 影
響을 주어 腦卒中 治療機轉을 實驗의 으로 研究하기
為에 人為의으로 中大腦動脈 閉塞小動 腦血瘀を 誘発시
킨 虛症에게 Hirudin藥漿을 静注(L4)에 注入한 뒤,
微細透析法(microdialysis) 및 高性能 液體クロマトグラフィ
(HPLC)을 利用하여 腦組織細胞의 神經傳達物質인
monoamine과 amino acid系列의 含量 變化를 測定하여
有意한 結果를 얻었기에 報告하는 바이다.

II. 實 験

1. 動物 및 材料

1) 動物

動物은 體重 240~260g의 Sprague-Dawley系 雄性 狼
鬍(大韓實驗動物센터)를 使用하였고, 兒과 雞蛋飼料(제
일사료 Co., 대전)을 자유롭게 養도록 하였으며, 閉室內
의 溫度는 21~24°C, 湿度는 40~60%로 維持하고了,

남과 밤의 適期은 各各 12時間으로 하였으며, 實驗室
環境에 2週間 適應기간後 實驗에 使用하였다.

2) 材料

藥漿水是 Sigma社의 Hirudin Fragment 54-65を 구입하
여 사용하였다.

2) 治療

본 實驗에 사용된 Hirudin은 주사용 神經薬(normal
saline)를 가하여 治療하였다.

2) 治療

環形 8마리의 1個群으로 하여 control group은 腦血瘀
만 誘発시켰고, sham group은 腦血瘀를 誘発시키지 않
고, 마취상태에서 같은 部位에 視神经만 하였으며, tail
group은 주사용 神經薬(normal saline)0.2ml을 静注에
注入하였다. 그리고 合谷(L4)에 相應하는 實驗動物의 體
表上的 閉塞 穴位에 saline group은 주사용 神經薬
(normal saline)을, sample group은 Hirudin藥漿を 各各
0.1ml(0.5mg/kg)의 1回 注入하였다.

3) 微細透析法

環形에 sodium pentobarbital(50mg/kg)을 腹腔注射하여
薬醉時 前 stereotaxic 手術에서 固定시켜 頭皮を 切開
하였다. 陥微鏡을 利用하여 lambda와 bregma를 基準으
로 線維組의 coordinate Ap +0.5, L 3.5, DV -4.5의 位置에
microdialysis probe設置를 為한 guide cannula를 設置하
았다. Stereotaxic 方法으로 手術을 마친 實驗群은 一週日
동안의 恢復期를 지낸 뒤, guide cannula를 通じ 微細
透析法을 為한 microdialysis probe(CMA/11, shaft length :
14mm, dimension : 0.24×3mm, Sweden)를 插入하고, microdialysis system에 連結하였다. Microdialysis injection
pump(CMA/100, Sweden)를 利用하여 1.5μl/min의 流速
으로 人工脳脊髓液을 probe에 灌流하였다. 人工脳脊髓
液(CSF)은 NaCl 8.66g, KCl 0.224g, CaCl2·2H2O 0.206g,
MgCl2·6H2O 0.163g의 500ml 溶液과 NaHPO4·H2O

30
0.214g, NaHPO₄・H₂O 0.0054g의 500ml 溶液을 混合하여 만들었다. Bowl cage 속의 환자가 자유로이 움직이는

 상태에서 脳의 線維로 내의 分析物質을 probe 말단의 半透過性膜의 擴散原理에 依하여 細胞外液을 取得하였다.

脳虚血 誘発 前에 20分間隔으로 3回 微細透析液を 取

하여 그 平均値을 baseline으로 하였으며, 脳虚血 誘発

後に 又 20分間隔으로 6回 微細透析液을 取하여 中大

脳動脈閉塞(middle cerebral artery occlusion, MCAO) 前後

의 微細透析液을 HPLC(higher fonction liquid

chromatography)을 利用하여 分析하였다.

4) 中大脳動脈閉塞(middle cerebral artery occlusion, MCAO)에 의한 虛栓の脳虚血 誘発

正常群을 除外하여 虚栓을 N0(70%)Oa(30%)와 混合

된 3% isoﬂurane으로 呼吸 麻醉시킨 後, 頭部를 切開하

여 右側 線維動脈과 外頸動脈을 結紮하였다. 15分동안

動物를 安定시킨 後, 頭部動脈을 조절 자고로 0.25mm

直徑의 nylon monofilament을 内頸動脈용으로 約 17mm

程度 沸여 넣어 中大脳動脈을 閉塞하였다. 切開된 部位

を 鏈合한 後 麻醉에서 恢復였는데, 手術 및 麻醉 恢

復期間동안 温度調節装置を 利用하여 直腸內 温度を

37℃로 持つしつつ였으며, 脳虚血이 誘発된 虚栓을 끝바로

microdialysis system에 連結시켰다.

5) HPLC을 利用한 生化學의 分析

・Mono Amine 定量法

分析하고자 하는 mono amine系의 dopamine, DOPAC

dihydroxy-phenylacetic acid), HVA(homovanillic acid),

HIAs(hidroxy indole acetic acid)의 standard을 만들기 위

해 各々의 試薬(Sigma Co., U.S.A.)을 PCA에 溶解시켜서

 혼합한 後, 최종 50mM의 外部 標準溶液을 만들었다. 定

量하기 爲한 mono amine 10μl를 HPLC(Model 5200A,

Guard cell : +400mV, Electrode : -100mV, Electrode :

+320mV)을 利用하여 分析하였다. Mobile phase의 造成

은 75mM sodium dihydrogen phosphate, 1.7mM OSA, 25μ

M EDTA, 10% acetonitrile, 0.001% triethylamine, pH 3.0

으로 끝추었다. HR-80 column(80×4.6mm, 3μm)을 利用

하여 平均値을 0.0ml/min의 流速으로 홀렸다. 各々

base line後 2시간 동안 20분 간격(Fractions 1-6, 以 hiking

F1-6)으로 検討하였다.

・Amino acids 定量法

分析하고자 하는 Amino acid(Aspartate, Glutamate, Aspar
glycin, GABA, Taurine, Alanine, Tyrosine)의 standard을

 만들기 위해 各々의 試薬(Sigma Co.)을 CSF에 溶解시켜서

 各々 10μM씩 採取하여 各々 1.43μM의 外部 標準溶液을 만들었다. 各々의 amino acid를

 HPLC로 分析하기 전 2分間 蒸氣誘導 混合로 적절히

한다. 蒸氣誘導体を 만들기 위해서는 OPA(O-phthalaldehyde) 27μg을 1ml의 methanol에 녹여서 5μl의 β-mercaptoacetanol과

0.1M的 sodium tetraborate 9μl를 mixing하여 HCl과

NaOHを pH 9.3으로 맞춘 뒤, 遮光하여 拡散の状態에

関하지 않도록 한다.

HPLC로 定量分析하기 24時間 前에 準備하여 농도

每 ppm에 0.1M sodium tetraborate 3μl을 섞어

서 working solution을 만들었다. 定量하기 위한 amino

acids 15μl의 working solution 5μl를 mixing한 後, 15μlを

HPLC(Waters 474 Scannind Fluorescence Detector, Waters

Model 510 Pump, Waters Model U6K)을 利用하여 分析하

였다. Mobile phase의 造成은 0.1M NaHPO₄ 700μl와

methanol 30μl을 mixing하여 H₂PO₄溶液으로 pH 6.0으로

 맞추었다. 1.2μl/min의 流速으로 이동상이 나타나게 하였

고 column은 4.6×150mm 5μ Spherisorb(Waters Co.)를

利用하였다. Pump의 壓力調節 및 retention time 및 理想

的分離를 위해 temperature controller을 利用하여

column의 温度を 30℃로 맞추어서 分析하였다. 斜量은

base line後 2시간 동안 20分 간격으로 测定하였다.

3. 統計解析

実験結果의 統計的 有意性은 ANOVA(One-Way Analysis of Variance)와 post-hoc LSD(Least Significant Difference) test를 利用하여 検証하였으며, P<0.05 水準

 thì 것을有意하다고 則定하였다.

III. 結果

1. dopamine 含量變化

Sample群의 base line dopamine含量은 26.9±19.8(100)

μM이었고, MCAO 이 후 F1, F2, F3, F4, F5, F6의
dopamine含量은 各々 370.2±166.5(3388±1954.6).
Fig. 1. Effect of Hirudin on extracellular levels of dopamine in MCAO rats.

The concentration (nM) of extracellular dopamine at the right striatum of rats subjected to MCAO, which was collected three times before MCAO (baseline) and six times after MCAO at 20-min intervals in rats and analyzed by HPLC.

Mean ± Standard Error
Numbers in parenthesis are relative values to baseline.

: Statistically significant as compared with control group
(#: P<0.05, ###: P<0.01)

$: Statistically significant as compared with sham group
($: P<0.05, $$: P<0.01)

*: Statistically significant as compared with tail group
(* : P<0.05)

290.2±137.5 (3497.3±2272.7), 299.2±140.5 (3663.3±2036.1), 292.3±152.2 (2915.3±1643.0), 274.6±148.6 (3241.2±184.69) 및 238.6±135.2 (2475.6±1507.2) nM로
F3는 saline群에 비하여有意性(P<0.05) 있게 감소하였으며, 또한 F5, F6은 control群에 비하여 有意性(P<0.05) 있게 감소하였다(Figure 1).

2. DOPAC含量変化

Sample群의 base line DOPAC含量은 562.4±59.5 (100) nM이었고, MCAO施行後 F1, F2, F3, F4, F5, F6의 DOPAC含量은 各々 368.4±94.9 (92.0±9.1), 503.0±27.2 (93.0±11.0), 484.6±15.9 (89.8±10.3), 504.7±14.8 (93.2±9.2), 523.5±39.9 (87.8±3.3) 및 533.3±37.4 (89.8±3.5) nM으로 유의한 차이는 없었다(Figure 2).

3. HIAA含量変化

Sample群의 base line HIAA含量은 2860.2±648.7 (100) nM이었고, MCAO施行後 F1, F2, F3, F4, F5, F6의 HIAA

Fig. 2. Effect of Hirudin on extracellular levels of DOPAC in MCAO rats.

The concentration (nM) of extracellular DOPAC at the right striatum of rats subjected to MCAO, which was collected three times before MCAO (baseline) and six times after MCAO at 20-min intervals in rats and analyzed by HPLC.

Mean ± Standard Error
Numbers in parenthesis are relative values to baseline.

Fig. 3. Effect of Hirudin on extracellular levels of HIAA in MCAO rats.

The concentration (nM) of extracellular HIAA at the right striatum of rats subjected to MCAO, which was collected three times before MCAO (baseline) and six times after MCAO at 20-min intervals in rats and analyzed by HPLC.

Mean ± Standard Error
Numbers in parenthesis are relative values to baseline.
Sample군의 base line HVA含量은 1374.1±171.4(100)μM이었고, MCAO 施術後 F1, F2, F3, F4, F5, F6의 HVA含量은 각각 962.9±88.1(78.8±8.5), 1144.9±144.4(84.3±8.0), 1130.9±124.6(84.3±8.0), 1097.5±102.5(82.5±7.5), 1031.2±116.9(80.2±9.0) 및 1031.0±118.0(80.2±8.4)μM로 F2, F3, F4, F5, F6은 control群에 비하여有意性(P<0.05)있게, F2은 Saline群에 비하여有意性(P<0.05)있게 증가하였다(Figure 4).

6. Aspartate 含量 變化

Sample군의 base line aspartate含量은 9.3±6.4(100)μM이었고, MCAO 施術後 F1, F2, F3, F4, F5, F6의 aspartate含量은 각각 14.1±8.6(21.02±73.3), 10.5±7.4(107.5±20.2), 10.3±6.4(194.2±99.9), 9.1±5.4(151.7±68.9), 12.6±7.2(193.5±92.9) 및 12.4±7.1(168.2±74.0)μM로 F2는 control群에 비하여 매우有意性(P<0.01)있게, tail群에 비하여有意性(P<0.05)있게 감소하였으며, F4는 control群과 tail群에 비하여有意性(P<0.05)있게 감소하였다(Figure 6).

Fig. 4. Effect of Hirudin on extracellular levels of HVA in MCAO rats
The concentration(μM) of extracellular HVA at the right striatum of rats subjected to MCAO, which was collected three times before MCAO(baseline) and six times after MCAO at 20-mins intervals in rat and analyzed by HPLC.
a) Mean ± Standard Error
Numbers in parenthesis are relative values to baseline.
#: Statistically significant as compared with control group (#: P<0.05, ###: P<0.01)
§: Statistically significant as compared with sham group (§: P<0.05, §§: P<0.01)
+: Statistically significant as compared with saline group (+: P<0.05)

Fig. 5. Effect of Hirudin on extracellular levels of glutamate in MCAO rats
The concentration(μM) of extracellular glutamate at the right striatum of rats subjected to MCAO, which was collected three times before MCAO (baseline) and six times after MCAO at 20-mins intervals in rat and analyzed by HPLC.
a) Mean ± Standard Error
Numbers in parenthesis are relative values to baseline.
#: Statistically significant as compared with control group (#: P<0.05, ###: P<0.01)
7. GABA 含量 變化

Sample 群의 base line GABA 含量은 8.2±7.7(100)μM 이었고, MCAO 施術後 F1, F2, F3, F4, F5, F6의 GABA 含量은 各각 154.7±142.8(1940.0±754.3), 242.6±224.1(1650.0±926.8), 161.3±133.4(1920.3±1485.6), 250.7±190.8(1226.5±349.3), 279.1±148.3(1689.0±695.8) 및 238.9±122.4(572.0±225.2)로 F2는 tail 群에 비하여 有意性(P<0.01)가 있게 감소하였다. 그리고 control 群에 비하여 F3, F4는 有意性(P<0.05)가 있게, F5, F6은 常態한 有意性(P<0.01)가 있는 감소를 보였다<Figure 7>.

8. Glycine 含量 變化

Sample 群의 base line glycine 含量은 31.4±15.9(100)μM 이었고, MCAO 施術後 F1, F2, F3, F4, F5, F6의 glycine 含量은 各각 49.2±20.8(246.6±60.8), 29.3±16.4(136.5±40.5), 30.2±15.9(223.6±115.8), 31.3±17.6(113.3±43.9), 36.2±20.9(145.0±37.3) 및 41.3±23.3(124.6±36.5)μM로 F3은 tail 群에 비하여 有意性(P<0.05)가 있게 감소하였다. 그리고 control 群에 비하여 F4, F6은 有意性(P<0.01)가 있게, F5는 有意性(P<0.01)가 있게 감소하였다<Figure 7>.

9. Taurine 含量 變化

Sample 群의 base line taurine 含量은 19.5±12.9(100)μM 이었고, MCAO 施術後 F1, F2, F3, F4, F5, F6의 taurine 含量은 各각 53.1±18.6(546.0±208.7), 42.9±21.8(624.5±362.4), 42.0±20.4(523.5±256.1), 42.9±21.9(396.8±151.0), 47.4±24.8(271.5±74.5) 및 55.4±27.1(192.4±33.2)로 F6은 control 群에 비하여 有意性(P<0.05)가 있게 감소하였다<Figure 7>.
10. Tyrosine 含量 變化

Sample 群의 base line tyrosine 含量은 9.1 ± 4.7(100) μM 이었고 MCAO 施術後 F1, F2, F3, F4, F5, F6의 tyrosine 含量은 각각 14.8 ± 5.9(275.7 ± 124.9), 9.6 ± 5.3(216.5 ± 128.5), 9.7 ± 5.6(102.0 ± 16.2), 21.6 ± 14.2(116.2 ± 47.3), 10.2 ± 5.5(146.0 ± 45.0) 및 14.5 ± 7.7(105.7 ± 25.5)로 control 群에 비하여 F1, F6은 有意性(P<0.05)가 있었고, F2, F3, F5는 현저한 有意性(P<0.01)로 감소를 보였다<Figure 10>。

11. Alanine 含量 變化

Sample 群의 base line alanine 含量은 33.1 ± 20.2(100) μM 이었고 MCAO 施術後 F1, F2, F3, F4, F5, F6의 alanine 含量은 각각 63.7 ± 28.8(364.8 ± 169.2), 57.5 ± 37.0(114.3 ± 23.6), 54.1 ± 34.5(238.5 ± 109.5), 48.8 ± 29.7(131.8 ± 42.4), 82.3 ± 53.1(200.8 ± 87.0) 및 97.2 ± 64.0(267.5 ± 120.6)로 F2, F4는 control 群에 비하여 有意性(P<0.05)가 있으면 감소하였다<Figure 11>。

Fig. 8. Effect of Hirudin on extracellular levels of glycine in MCAO rats
The concentration(μM) of extracellular glycine at the right striatum of rats subjected to MCAO, which was collected three times before MCAO(baseline) and six times after MCAO at 20-mins intervals in rat and analyzed by HPLC.

1) : Mean ± Standard Error
Numbers in parenthesis are relative values to baseline.
: Statistically significant as compared with control group (# : P<0.05, [][] : P<0.01, #### : P<0.001)
§ : Statistically significant as compared with sham group (§ : P<0.05, §§ : P<0.01, §§§ : P<0.001)
★ : Statistically significant as compared with tail group (★ : P<0.05)

Fig. 9. Effect of Hirudin on extracellular levels of taurine in MCAO rats
The concentration(μM) of extracellular taurine at the right striatum of rats subjected to MCAO, which was collected three times before MCAO (baseline) and six times after MCAO at 20-mins intervals in rat and analyzed by HPLC.
a) : Mean ± Standard Error
Numbers in parenthesis are relative values to baseline.
: Statistically significant as compared with control group (# : P<0.05)

Fig. 10. Effect of Hirudin on extracellular levels of tyrosine in MCAO rats
The concentration(μM) of extracellular tyrosine at the right striatum of rats subjected to MCAO, which was collected three times before MCAO(baseline) and six times after MCAO at 20-mins intervals in rat and analyzed by HPLC.
a) : Mean ± Standard Error
Numbers in parenthesis are relative values to baseline.
: Statistically significant as compared with control group (# : P<0.05, [][] : P<0.01)
IV. 考察

현재 醫學界에서 사고로 절단된 손가락, 귀 등을 접
합하는데 귀미의 特性을 이용하고 있다. 刺蝟은 水
蛭科(거미과)와; Hirudin nidica에 속한 環節動物인 蛲蜥
(Whitmania pigra Whitman)과 거미(水蛭 : Hirudo
nipponica Whitman) 및 柳葉蛭蜥(Whitmania acranulata
Whitman)의 乾燥體이며, 寬水蛭, 馬蛭, 至掌으로 불리기
도 한다. 性은 平有小毒하고 味는 辛酸苦하며, 肝腎으로
入하고 破血祛瘀, 散瘀通經의 效能이 있어서 燥血
瘀塊, 血瘀經閉, 肝打損傷을 주치한다.

기존의 보고에 의하면 刺蝟의 經口授與를 통한 血栓
症의 治療에서 安は는 血流관수, Fibrinogen 量, PT
(prothrombin time)에서 有意性있는 효과를 보고하였으
며 FDP등은에서는 有意性이 인정되지 않았다. 4번 하
은 療血에 관한 熊膽의 치료효과를 실험적으로 규명하
기 위하여 刺蝟을 비교약물로 채택하여, 연구한 결과
Fibrinogen 量과 PT는 熊膽 및 刺蝟 抵抗群에서 모두 有
意性이 인정되어 熊膽 및 刺蝟은 血栓症과 고혈압형중
에 관련되어 나타나는 高血壓, 動脈硬化症, 血管疾患
 및 腦血管疾患 등의 治療와 치료에 효과적으로 응용될
수 있다고 하였다.

水蛭藥理 效果에 대한 實験의 研究로는 水蛭의
endotoxin을 주입하여 유발시킨 血栓症에서 對照群의
血栓관수는 正常群에 비하여 현저히 감소하였으며, 水
蛭藥理群 및 紅花藥獄群 모두 對照群에 대하여 증가하
는 경향을 나타내었는데, 특히 水蛭藥理群은 有意性여
는 증가를 나타내었다고 하였다.

水蛭의 주성분인 Hirudin은 肝臓이 후 교과 혈액학적
적이나 교과 혈액용고를 제거하는 데 쓰이며, 最近에는
靜脈血栓症의 예방 및 치료 등 全身의 血液凝固 防
止에도 그 사용이 시도되고 있다. Hirudin은 대표적인
血液凝固 防止剤이 heparin보다 30여 년 전에 발견되
었으며, 현재는 유전자 제조법에 의해 대량생산이 가능하
다. 첫 번째 Hirudin은 65개의 아미노산으로 구성되어 있
으며, 분자량은 7kD 정도이다. Hirudin의 작용은 혈液
流れ에서 축적된 혈액용고를 열어버리는 thrombin을 선택적으
로 억제하여 신속하게 혈액용고를 억제한다. 또한 전
신성 혈관내 응고(disseminated intravascular coagulation)
와 혈전생성을 억제하여 투여 후 축혈빈도는 heparin보
다 적게 나타난다. 따라서 1980년대부터 Hirudin의 임상용응용에 대해 많이 연구되어 왔으며, 외국
에서도 혈전증에 Hirudin을 이용한 많은 보고가 있다. 그
러나 中大腦動脈을 閉塞시킨 動物모델에 Hirudin을
 이용한 것은 있으나, 腦循血流에서 Hirudin이 神經傳
達物質에 미치는 영향에 關於한 연구는 아직까지 없는
실정이다.

中風 治療은 中風이라 하여 相異한 治法가 要求되는
것은 아니다. 疾病의 原因 및 性質에 따라 前後致과
輕重 등의 治療方法이 있는 것이다. 中風는 本虚標實
이 上盛下虛의 症되었다 할 수 있으므로, 大部分 急性期에는
視血本虚證이도 要虚證을 爲主로 治療한다. 急性
治其標의 原則에 따라 平肝熄風, 清熱養陰, 化痰通絡, 活
血通絡 등의 治法을 多用한다. 隨著 藥性가 責にある 原론에 빠지는 症状을 除去하기 ため에
서 藥物療法 以外에도 捏法, 鍼法, 開竇法, 取嚏法, 吐法, 書
法 등의 多樣의 治法을 使用할 수 있다.

現在까지 알려진 神経傳達物質은 약 60가지 정도이
며, 一般的으로 神経傳達物質은 3 가지로 분류할 수 있
다. Amino acid系 傳達物質은 I型, amine系는 II型, peptide
系는 III형으로 分類한다. 특이 amino acid系는 Glutamate, Aspartate, GABA, Glycine, Taurine 등으로 빠른 作用을
 나타나는 ion門性 傳達物質이이고, 腦循血流 神經末端에
서 분비된 후 뇌조직내에 수분배된 영양성 또는 흉양성 또는 흉양성 억제성으로 작용한다. Amine系는 복합의 능력을 하는 대표으로 전달물질이며, peptide系는 아직 자세한 기능을 밝히지 못하였으며, 신경조직물질의 적용을 하기에도 하고, 다른 신경조직물질의 효과를 조절해 주는 조절자 역할을 하기도 한다.

뇌수의 뇌수협취는 신경조직물질은 신경조직을 공해하는 역할을 하기 때문에, 뇌수협취가 뇌수 혈압이 높거나 뇌수 혈액이 높지 않을 때 신경조직물질의 영양성 억제성 또는 흉양성 억제성으로 작용한다. Amine系는 복합의 능력을 하는 대표으로 전달물질이며, peptide系는 아직 자세한 기능을 밝히지 못하였으며, 신경조직물질의 적용을 하기에도 하고, 다른 신경조직물질의 효과를 조절해 주는 조절자 역할을 하기도 한다.

뇌수 혈관 내의 뇌수협취는 뇌수 혈관의 성장을 조절하여 뇌수 혈관의 혈액이 높지 않게 하기 때문에, 뇌수협취가 뇌수 혈압이 높거나 뇌수 혈액이 높지 않을 때 신경조직물질의 영양성 억제성 또는 흉양성 억제성으로 작용한다. Amine系는 복합의 능력을 하는 대표으로 전달물질이며, peptide系는 아직 자세한 기능을 밝히지 못하였으며, 신경조직물질의 적용을 하기에도 하고, 다른 신경조직물질의 효과를 조절해 주는 조절자 역할을 하기도 한다.

뇌수 혈관 내의 뇌수협취는 뇌수 혈관의 성장을 조절하여 뇌수 혈관의 혈액이 높지 않게 하기 때문에, 뇌수협취가 뇌수 혈압이 높거나 뇌수 혈액이 높지 않을 때 신경조직물질의 영양성 억제성 또는 흉양성 억제성으로 작용한다. Amine系는 복합의 능력을 하는 대표으로 전달물질이며, peptide系는 아직 자세한 기능을 밝히지 못하였으며, 신경조직물질의 적용을 하기에도 하고, 다른 신경조직물질의 효과를 조절해 주는 조절자 역할을 하기도 한다.

뇌수 혈관 내의 뇌수협취는 뇌수 혈관의 성장을 조절하여 뇌수 혈관의 혈액이 높지 않게 하기 때문에, 뇌수협취가 뇌수 혈압이 높거나 뇌수 혈액이 높지 않을 때 신경조직物질의 영양성 억제성 또는 흉양성 억제성으로 작용한다. Amine系는 복합의 능력을 하는 대표으로 전달물질이며, peptide系는 아직 자세한 기능을 밝히지 못하였다. Amine系는 복합의 능력을 하는 대표으로 전달물질이며, peptide系는 아직 자세한 기능을 밝히지 못하였으며, 신경조직물질의 적용을 하기에도 하고, 다른 신경조직물질의 효과를 조절해 주는 조절자 역할을 하기도 한다.

본 실습은 대뇌동맥 끝단 수술용로, 근마치한 뇌수 혈액 혈압 뇌수 혈액 혈 액 뇌수 혈액 혈압 뇌수 혈액 혈 액 뇌수 혈액 혈압 lacting glutamate receptor에 대한 작용에서 관계하여 glutamate의 세포독성작용을 조절하고 알려져 있으며, 이러한 증측으로 microdialysis 방법을 이용한 global ischemic model과 focal ischemic model에서 세포독성의 Dopamine 함량이 크게 증가하였다. 이러한 증가는 exocytosis 증가, 재생수 채널 및 신화자의 변화로 야기된다고.뇌경색의 정도는 가역적 손상기전의 친화도 및 건립의 상관관계에 있으며 세포독성의 glutamate 함량도 뇌경색 정도에 비례하여 증가한다. Dopamine의 경우도 뇌경색 정도에 비례하여 증가하거나 증가하는 glutamate에 비례하여 빠르다고. 이러한 Dopamine의 균일성 증가는 MCAO 동물모델에서 조직학적 손상모델과도 일관된 관계가 있으며, 특히 혈액 농도가 높을 때 Dopamine은 직접 침해를 하지 않고 중요한 신경독성 작용을 가지고 있다. 또한 조직학적 독감은 말아서 adenylate kinase나 creatine kinase 같은 대사효소에 독감을 보인다. 본 실험에서 뇌피질이 유발된 후 대조군에서는 dopamine의
항암은 60분까지 증가하고 그 이후에는 감소하였다. 이 결과는 다른 보고와도 일치하였다.
본 실험에서 난혈소증은 합성한 후 Dopamine 혈관을 관찰한 결과, 2개의 실험 조건에 따라 수용성 있는 약제가 관찰되어
Hirudin 항병이 능해용

DOPAC과 HVA는 Dopamine의 대사산물로서 새로운
Dopamine 항병의 지표로 사용되는데, 난혈소증 후 basal level을 유지하거나 감소한다고 보고되었으며, 본 실험
에서 난혈소증 유발된 후 독성조건에서의 Dopamine와 HVA
의 항병은 basal level의 수준에서 약간 감소하는 결과를 보았다. 이러한 감소는 monoamine 산화에 관여하는
효소인 MAO(monoamine oxidase) 활성의 감소와 관련이 있을 것으로 생각된다. 본 실험에서 난혈소증을 유발한 후 DopAC 혈관을 관찰한 결과, 2개의 실험 조건에 따라 수용성 있는 약제가 관찰되어
DOPAC과 HVA는 모두 Dopamine의 대사산물이 본 실험에서 HVA 항병이 오히려 증가하는 결과를 나타나 약간 더 많은 연구가 필요할 것으로 생각된다.

HIAA는 수산화 인돌산으로서 serotonin의 대사산물이 다. 난혈소증시 HIAA는 별 변화가 없거나 감소한다고 알려져 있는데, 본 실험에서는 제 외에 유발된 후 대
조군에서의 HIAA의 항병이 감소하였다. 본 실험에서 난혈소증을 유발한 후 HIAA 혈관을 관찰한 결과, 2개의 실험 조건에 따라 수용성 있는 약제가 관찰되어
Hirudin 항병이 능해용

Glycine은 GABA와 함께 중추신경계에서 혈관 담역을

Amino sulfonic acid인 Taurine은 산성의 이온으로서

Taurine도 GABA와 함께 혈관 담역이

endogenous amino acid로 혈관 담역이

라인을 얻어치는 것으로 나타났다. 본 실험에서 난혈소증은 합성한 후 Dopamine 혈관을 관찰한 결과, 2개의 실험 조건에 따라 수용성 있는 약제가 관찰되어
Hirudin 항병이 능해용

또한, 본 실험에서 난혈소증은 합성한 후 Dopamine 혈관을 관찰한 결과, 2개의 실험 조건에 따라 수용성 있는 약제가 관찰되어
Hirudin 항병이 능해용

라인을 얻어치는 것으로 나타났다. 본 실험에서 난혈소증은 합성한 후 Dopamine 혈관을 관찰한 결과, 2개의 실험 조건에 따라 수용성 있는 약제가 관찰되어
Hirudin 항병이 능해용

라인을 얻어치는 것으로 나타났다.
을 관찰한 결과, Hirudin 펭은 저항성 실험군에서 오히려 감소되어 Hirudin 펭은 신경세포를 보호하는 효과는 Taurine를 매개로 이루어지는 것은 아닌 것으로 사료된다.

Alanine은 천연 amino acid로서, kynurenic acid 분해효소인 kynurenic hydroyxylase를 억제하는데 사용한다. Kynurenic acid은 tryptophan의 대화물로서 도달이 빠르게 나타나며, kynurenic acid의 전해가물이다. 뇌수혈시 dialysis probe를 통해 hippocampus와 parietal cortex부위에 Alanine을 부여하면 퇴빛물질에 kynurenic acid 함량이 증가되어 glutamate receptor의 억제력으로서 효과를 보고, kynurenic hydroyxylase의 억제 효과를 하였다. 이에 따라 Hirudin 펭은 신경조직의 변화를 억제하는 효과를 보고, 퇴빛물질에 혈전증을 유발하였다. 본 실험에서 뇌수혈을 촉발시킨 후 Alanine의 퇴빛을 관찰한 결과, 퇴빛물질은 억제된 퇴빛물질로 보이는 것은 아닌 것으로 생각된다.

Tyrosine은 hippocampus부위에 Tyrosine Phosphorylation (동물화)로 존재하고 있는데, 뇌수혈시 Tyrosine Phosphorylation이 Phosphorylated으로 되는데 Tyrosine Phosphorylation의 활성화를 억제하면 뇌수혈의 뇌수혈의 촉발시킨 후 Tyrosine Phosphorylation의 저항성을 억제하면 퇴빛물질에 혈전증이 증가하는 것으로 보고, 퇴빛물질에 혈전증의 방지효과는 억제된 퇴빛물질으로서 효과를 보였다고 하였다. 본 실험에서의 혈전증을 촉발시킨 후 Tyrosine의 퇴빛을 관찰한 결과, Hirudin 펭은 저항성 실험군에서 퇴빛물질을 억제하는 것으로 보이고, 퇴빛물질의 억제효과는 Tyrosine Phosphorylation의 억제물로서의 효과가 된다.

V. 결론

36. Tsuchida E, Bullock R. The effect of the glycine site-

