원저

芮미티스 관절염에 있어 중양괴사인자 다형성에 대한 연구

김경운, 이경민, 이병호, 임성철, 정태영, 서정철
- 대구한의대학교 한의과대학 침구경협학교실

Study on Tumor Necrosis Factor-α Gene Polymorphism in Rheumatoid Arthritis

Kim Kyung-un, Lee Kyung-min, Lee Bong-hyo, Lim Seong-chul, Jung Tae-young, Seo Jung-chul
- Department of Acupuncture & Moxibustion, College of Oriental Medicine, Daegu Haany University

ABSTRACT

Objectives Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine involved in the pathogenesis of rheumatoid arthritis. This study was designed to investigate the relation between TNF-α gene polymorphism and rheumatoid arthritis in Korean population.

Methods This study was carried out on 103 rheumatoid arthritis patients who fulfilled the American College of Rheumatology 1987 revised criteria for rheumatoid arthritis and 208 healthy control subjects. Blood samples from all subjects were obtained for DNA extraction. The extracted DNA was amplified by polymerase chain reaction (PCR). PCR products were visualized by 2% agarose gel electrophoresis. We investigated the genotyping of TNF-α by using Pyrosequencing.

Results The genotypes of TNF-α gene were GG, AG and AA. While the distribution of TNF-α polymorphism in control subjects was 92.31%, 7.21%, 0.48% respectively, in rheumatoid arthritis patients was 93.20%, 6.80%, 0.00% (GG, AG, AA). There was no statistical significant allelic frequency difference between control and rheumatoid arthritis groups.

Conclusion We concluded that there was no significant association between TNF-α gene polymorphism and rheumatoid arthritis. However, the findings of this study need to be confirmed in more patients and further studies.

Key word Rheumatoid Arthritis, TNF-α, Gene, Polymorphism

1. 서론

芮미티스 관절염은 근골격계 질환 중 난치병의 하나로서 대칭되는 다각 관절의 종중, 종중, 변형 및 기능상실 등을 주된 증상으로 하는 자기면역성 질환이다. 지역의 차이는 있으나 세계 인구의 약 1%가 발병하여 사회적, 경제적 및 개인적으로 살의 질에 대한 영향을 미치는 질병으로 인식되고 있다.

한의학적으로는 목절기, 목절기, 목절기, 목절기, 목절기, 목절기 등이 러미티스 관절염과 유사한 임상증상을 보여 이의 범주에 해당한다고 권 등이 보고하였으며, 원인을 살펴보면 목절기, 목절기, 목절기 등 신체가 허약해지며, 목절기 등은 목절기, 목절기 등, 목절기 등은 목절기, 목절기 등으로 인하여 발생하며 치료법으로는 목절기, 목절기, 목절기, 목절기, 목절기, 목절기 등으로 자세히 살펴보았다.

芮미티스 관절염의 원인은 아직까지 정확한 원인은 밝혀지지 않았으나 염증성 사이토카인들이 발병기에 중요한 요소로 알려지고 있으며 특히 사이토카인들 중 Tumor necrosis factor-α (TNF-α)가 러미티스 관절염의 비정상적인 염증반응에 중심적 역할을 하고 있음이 여러 연구에 의해 명명되었다.

TNF-α는 초기단계의 염증반응을 매개하는 단백으로 체내에서 염증반응 및 면역반응 등의 인체 내에서 발현하는 대표적인 사이토카인이다. 그러나 TNF-α의 증가는 비정상적인 염증 반응을 일으킬 수 있으며, TNF-α가 러미티스 관절염 환자의 혈청, 활액, 활액도 조직에서 증가되어 있는 것

※ 교신저자: 서정철, 경상북도 구미시 송정동 458-7번지 대구한의대학교 부속구미한방병원 침구경협학교실
Tel: (054)450-7707, Fax: (054)452-2219, E-mail: acumox@hanmail.net
이 보고되었고, 직접적으로 TNF-α를 억제(중화)하였을 때
임상증상이 호전되면 보고되는 등 최근 많은 연구가 이루어지고 있다.1.23-6

최근 TNF-α의 유전자 다양성이 자궁경부암7, 척막8, 심부
전9, 전정종10 등과 같은 질환과 연관되어 보고되고 있으며, 류마티스 관절염의 유전적 감수성 및 관절염과의 진행도와의 관계를 밝히고자 하는 여러 연구가 이루어지고 있으나11-20
국내에서는 이에 관련된 보고가 아직 미미한 상태이다.

이에 저자는 류마티스 관절염과 TNF-α 유전자 다양성의 연관성을 알아보기 위해 2002년 5월 1일부터 2005년 12
월 31일까지 대구한의대학교 부속한성병원에 내원한 류마티
스 관절염 환자와 건강대조군을 대상으로 유전자형을 관찰
하여 그 결과를 보고하는 바이다.

II. 연구대상 및 방법

1. 연구 대상

1) 대조군

대조군은 2002년 5월 1일부터 2005년 12월 31일까지 대
구한의대학교 부속한성병원에 내원한 모든 환자 중 208명을 대상으로 하였다. 대조군은 환자군과 연
령과 성별을 맞추어 선정하였다.

2) 환자군

환자군은 2002년 5월 1일부터 2005년 12월 31일까지 대
구한의대학교 부속한성병원에 류마티스 관절염으로 내원한 환자 103명을 대상으로 하였다. 모든 환자들은 American College of Rheumatology 진단기준22과 전통적인 항 류마
티스 약물치료를 적어도 3개월 이상 받은 진행 중인 상태를 만족하였다. 또한 만성 감염성질환, 중양, 다발성 경화증, 신
장, 간장, 심장, 혈액학적 질환 등의 기전력이 없는 환자로 재
한하였다.

그리고 환자군은 모두 병력검사를 시술받았는데, 병력검
담표1의 우수도 만점 후, 121도에서 20분간 autoclave에서 병
균하여 생리시험수에 0.3% 농도로 외식시킨 후에 염증성세
의관찰 주위 특징 경화에 따라 비에 의해 시술하였다. 병력검담표는 한
혈당당 0.1mmol로 중시물림이 1mm가 넘지 않도록 하였으
며, 이전부터 병력 중간 일반적인 약물은 병력검담표에서 변
화없이 허용되었다.

2. TNF-α의 유전자형 확인

1) DNA 분리

DNA는 피험자의 혈액샘플에 적당량의 용해용액(50mM
Tris, 100mM EDTA, 0.5% SDS)과 proteasein K(10μg/mL)
을 10-25μl 참가한 후 55°C에서 응시시켰다. Phenol을 동량
가한 후 10,000g에서 3분간 원심분리하여 상층액을 세 트로
에 응시하고 동량의 phenol/ chloroform/ISO 제청하여 갯
혼합한 후 같은 방법으로 원심분리하여 상층액을 세 트로에
응시했다. Ethanol로 DNA를 절전, 세척, 건조하고 적당한 양
의 3차 증류수나 TE(1mM Tris-HCl, 1mM EDTA) buffer에
응시시켰다. 또한 혈액에서 QIAGEN DNA Mini Kit(Qiagen, USA)가 고전적인 방법으로 genomic DNA를
분리하였다.

2) PCR 증폭

DNA를 분리 정제한 후, template로 DNA를 100-250ng, primer로는 10pmol, TNF-α sense 5′-CCATCTTCGTCTGG
AAGTAG-3′, TNF-α antisense 5′-ACACAGGATCAA
GGATACC-3′ 각 1μl, dNTP(2.5mM)를 1μl, Taq
polymerase를 2units, 10X 완충액을 3-5μl, 발아온수로 적
당량 넣어 중 반응용액을 30-50μl로 하였다. PCR 자동화기
계 Gene-Amp PCR System 9600(Perkin-Elmer, Foster
City, CA, USA)에서 denaturation은 94°C에서 1분간, 94°C
1분, 62°C 1분, 72°C 1분을 35회 실시한 후 72°C에서 5분간 마
무리 반응을 실시하였다.

3) Pyrosequencing 반응을 위한 준비

Single-stranded DNA의 준비를 위해 antisense primer에
biotin을 붙였다. PCR 산물은 agarose gel로 전기영동으
여 확인하고 PCR 산물에 streptavidin sepharose beads
Streptavidin Sepharose HP, Amersham Pharmacia
Biotech, Uppsala, Sweden)를 표준 protocol(Pyrosequencing AB, Uppsala, Sweden)에 따라 부착하였다. Se
quencing primer는 5′-CCATCTTCGTCTGG-3′로, 변이 위치
에 가깝게 디자인하였다.

20μl의 biotinylated PCR 산물에 streptavidin-coated sepharose beads를 부착시킨 후 산물에서 10분간 방치한 후
 이를 Millipore 96-well filter plate(Millipore, Bedford, MA)에 옮겼다. Bead는 well 안에 남기고 순수한 single-
stranded DNA를 얻고 여러 다른 용액과 시험을 제거하기
위해 Intromix를 이용하였다.
PCR strand는 50μl의 0.2M sodium hydroxide에 1분간 방치한 후 150μl의 10mM Tris-acetate(pH 7.6)에서 두 번 세척한 후 분리하였다. Bead는 0.35M sequencing primer ILIR seq와 IL-10 seq를 포함한 55μl의 4M acetic acid에서 다시 현탁한 후 45μl의 현탁액을 PSQ 96 plate(Pyrosequencing AB, Uppsala, Sweden)에 옮겼다.

4) Pyrosequencing 분석
생물을 포함하고 있는 PSQ 96 plate는 sequencing primer가 annealing되게끔 80℃에서 PSQ 96 Sample Prep Thermoplate (Pyrosequencing AB, Uppsala, Sweden)를 이용하여 2분간 데웠다. 그 후 실온에서 5분간 방치 후 PSQ 96 Plate는 PSQ 96 instrument(Pyrosequencing AB, Uppsala, Sweden)의 chamber에 옮겼다. PSQ 96 SNP Reagent Kit(Pyrosequencing AB, Uppsala, Sweden)의 cassette로부터 enzymes, substrates, nucleotides 등을 well로 분배하였다. 이 과정에서 nucleotide가 DNA strand에 합쳐질 때 나타나는 빛을 특수 카메라가 인식하여 자동으로 유전자 단일염기변이성형성(single nucleotide polymorphism, SNP)을 판독하였다.

3. 통계 처리
대조군과 환자군 사이에서 유전자형분포의 차이와 대립유전자변이(allele) 변도의 차이는 x²-test를 하였다. 성별의 비교는 x²-test를 이용하였고, 나이의 비교는 Student's t-test를 이용하였다. 각각의 경우 통계적 유의성은 p 값이 0.05 미만으로 하였다. 통계프로그램은 SAS statistical package(release 8.1, SAS Institute Inc., USA)를 이용하였다.

III. 결과

(Table 1) Clinical Characteristics of Rheumatoid Arthritis Patients and Controls

<table>
<thead>
<tr>
<th></th>
<th>Rheumatoid arthritis patients (n=103)</th>
<th>Controls (n=208)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male / Female</td>
<td>12 / 91</td>
<td>36 / 172</td>
<td>0.243</td>
</tr>
<tr>
<td>Age*</td>
<td>59.35 ± 6.19</td>
<td>59.48 ± 6.06</td>
<td>0.175</td>
</tr>
</tbody>
</table>

x²-test was used to compare sex between controls and rheumatoid arthritis patients. Age was compared by Student's t-test. * mean ± SD(year)

1. 대상자의 일반적인 특징

설별분포는 류마티스 관절염 환자군 103명 중 남자 12명, 여자 91명이었고, 대조군 208명 중에서 남자 36명, 여자 172명이었다. 평균 연령은 류마티스 관절염 환자군 59.35±6.19세였고, 대조군은 59.48±6.06세였다(Table 1).

2. Pyrosequencing 결과

Pyrosequencing은 DNA sequencing에 이용되기도 하는 SNP 분석방법으로 DNA가 합성되는 동안 방출되는 inorganic pyrophosphate (PPi)의 light 발현을 detect하는 방법으로 TNF-α-308 GA gene의 AA, GG 및 AG genotype의 결과는 다음과 같다(Figure 1, 2, 3).

Figure 1. Pyrosequencing result of AA genotype of the TNF-α-308 gene

Figure 2. Pyrosequencing result of GG genotype of the TNF-α-308 gene
4. 대립 유전자 분포

류마티스 관절염 환자군과 대조군 사이에 대립 유전자 (allele) 빈도 분포는 TNF-α의 대립 유전자인 G와 A에서 류마티스 관절염 환자군은 각각 96.60%와 3.40%였고, 대조군은 95.91%와 4.09%로 류마티스 관절염 환자군과 대조군의 대립 유전자 분포는 두 군간에 유의한 차이가 없었다 (p=0.826, Table 3).

IV. 고찰

류마티스 관절염은 다양한 임상적 결과를 가지며, 여러 관절의 활액을 주로 침범하여 대부분의 경우 전절적인 연구와 같은 파괴를 입으키는 자기면역성 백혈병중증 질환이다. 발생원인에 대하여 아직까지 명확하게 밝혀진 바가 있으나, 최근 TNF-α, INF-γ, IL-19 및 IL-6 등의 사이토카인에 의해 활염중증이 발생하여 저속되는 것으로 알려지고 있으며, 이들 중 일부 사이토카인의 유전자 다형성이 류마티스 관절염의 유전적 감수성을 관리가 있거나 관절염과의 진행 속도와 연관되어 있다는 보고들이 있다.

한의학에서 류마티스 관절염은 봉산통, 성우가, 혈중, 쌍관절통, 쌍관절통, 뇌관절통, 몸통통 등 여러 병소에 속하며, 그 원인을 〈黄帝内经.素问〉에서 "風寒濕氣三氣混而為病也" 하여, "風寒濕外氣가 내부의 중요한 원인이라고 언급하였고 〈金匱要略〉에서 "真陰衰弱, 精血動損, 此三者而甚極而發病"라 하였고, 〈金匱要略〉에서 "風寒濕氣, 精血動損, 此三者而甚極而發病"라 하였고, 〈金匱要略〉에서 "風寒濕氣, 精血動損, 此三者而甚極而發病"라 하였다.

TNF-α는 초기단계의 염증반응을 매개하는 17kDa 크기의 단백으로 체내에서 염증반응 및 면역반응 등의 일련의 반응을 관여하는 대표적인 사이토카인이 다. TNF-α는 감염의 확산을 막는 정상 면역 반응기전에 중요한 역할을 하고, 분비된 TNF-α는 혈관 내피세포를 활성화하여 박테리아의 발현을 증가시켜, nitric oxide의 분비를 촉진하여 혈관이완을 유발하며, 혈관의 투과성을 증가시킨다. 그 결과 염증세 포, 면역글로불린 그리고 보체가 조직에 증가하게 되어 감염을 조절한다. 그러나 어떠한 원인에 의하여 TNF-α의 생산이

Table 2	Frequencies of Polymorphism in TNF-α -308 Gene in Rheumatoid Arthritis Patients and Controls			
Genotype	%	p value		
GG	AG	AA		
Rheumatoid arthritis patients (n=103)	96(93.20)	7(6.80)	0(0.00)	1.000
Controls(n=208)	192(92.31)	15(7.21)	1(0.48)	0.826

x²-test was used to compare genotypes frequencies between rheumatoid arthritis patients and controls.

Table 3	Allele Frequencies of Polymorphism in TNF-α -308 Gene in Rheumatoid Arthritis Patients and Controls		
Allele Frequency	G	A	p value
Rheumatoid arthritis patients (n=103)	199(96.60)	7(3.40)	0.826
Controls(n=208)	399(95.91)	17(4.09)	0.826

x²-test was used to compare allele frequencies between rheumatoid arthritis patients and controls.
부적절하게 증가하는 경우에는 여러 비정상적인 면에서 반응을 일으킬 수 있고, 관절절환의 발현에 영향을 주게 됩니다. 류마티스 관절염이나 통풍증 관절염, 감염성 관절염 등 중 더 관절 침습성이 진행성인 질환에서 관절관이 높은 것으로 알려져 있습니다.

TNF-α가 류마티스 관절염 환자의 혈청, 활액, 활액막 조직에서 증가되어 있었고, 직접적으로 TNF-α를 억제하려는 목적에 일시성성이 호진하는 등의 보고가 있었으며, 실제 항 TNF-α 약물이 류마티스 관절염의 새로운 치료제로 사용되고 있습니다.

TNF-α에 대한 유전자로 가진 인간의 TNF-α 유전자는 염색체 6p23.3의 class III 영역에 위치한다. 7 각 개인의 사 이보간 다양성은 많은 차이가 있는데, 이러한 사 이보간 장 유전자 다양성에 의한 차이로 사람마다 염증 질환이나 자 가면역질환 등에 대한 감수성이 다르게 되며, 장단점에서 있어 TNF-α의 생산 정도 또한 가체따라 차이가 있다. 여러 연구 결과들은 TNF-α 생산 정도의 차이가 TNF-α 유전자 유전적 다양성에 기인한 것이라는 가설을 논리적으로 하고 있다. 8 9 특히 TNF-α 유전자 promoter의 -308 부위의 점변이 TNF-α의 생산과 가정 관련이 많다고 알려져 있다.

본 연구에서는 류마티스 관절염 환자군과 대조군 사이에 서 TNF-α promoter -308 부위의 유전자 다양성을 통하여 류마티스 관절염의 유전적인 요인 관련 상관관계를 분석하기 하였다. 류마티스 관절염 환자군 103명과 대조군 208명에서 TNF-α promoter -308부위의 유전자 다양성은 Pyrosequencing을 통해 살펴보았다. CG, AG, AA 유전자형의 빈도는 류마티스 관절염 환자군에서 각각 96명(33.20%), 7명(6.80%), 5명(0.0%), 대조군은 각각 129명(62.31%), 15명(7.21%), 1명(0.48%)으로 류마티스 관절염 환자군과 대조군의 유전자형 분포는 두 군간에 유의한 차이가 없었다(p=1,000). 또한 대립유전자 G, A의 빈도는 류마티스 관절염 환자군에서 각각 96.60%와 3.40%였고, 대조군은 95.91%와 4.09%로 류마티스 관절염 환자군과 대조군의 대립 유전자 분포는 두 군간에 유의한 차이는 없는 것으로 (p=0.826) 나타났다.

본 연구에서는 류마티스 관절염 환자군과 대조군 사이에 TNF-α promoter -308 부위의 유전자형 분포와 대립유전자 분포에는 유의한 차이가 없을 것을 시사하고 있다. 하지만, 환자 수가 적었으며 각 유전자 유형은 절대적인 임상적, 보건의학적 치료에 대한 방법으로는 연관은 조사하지 못한 것이 부족한 점이었다. 향후 이에 대한 지속적인 연구가 필요하다고 사료된다.

V. 결론

TNF-α의 유전자 다양성이 류마티스 관절염의 발병과 관련이 있는가에 대하여 본 연구를 통해 대구대학교 대학 부속병원에서 조사한 결과 류마티스 관절염 환자군 103명과 대조군 208명을 대조로 유전자형 분석한 결과 다음과 같은 결론을 얻었다.

1. 류마티스 관절염 환자군과 대조군의 유전자형 분포는 두 군간에 유의한 차이가 없었다.
2. 류마티스 관절염 환자군과 대조군의 대립 유전자 분포는 두 군간에 유의한 차이가 없었다.

이상의 결과는 TNF-α의 유전자 다양성이 류마티스 관절염의 발병과 관련성이 없음을 시사하고 있으나 향후 더 많은 수의 환자를 대상으로 TNF-α의 기하 변이 위치 뿐만 아니라 다른 유전자와의 단일염기다형성에 대한 지속적인 연구가 필요하다고 사료된다.

参考文献

3. 金定演, 診療要略, 서울:동양의학연구소, 1974;459-

